CausalTrail: Testing hypothesis using causal Bayesian networks
نویسندگان
چکیده
Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail.
منابع مشابه
Bayesian Fuzzy Hypothesis Testing with Imprecise Prior Distribution
This paper considers the testing of fuzzy hypotheses on the basis of a Bayesian approach. For this, using a notion of prior distribution with interval or fuzzy-valued parameters, we extend a concept of posterior probability of a fuzzy hypothesis. Some of its properties are also put into investigation. The feasibility and effectiveness of the proposed methods are also cla...
متن کاملThe Cognitive Processing of Causal Knowledge
There is a brief description of the probabilistic causal graph model for representing, reasoning with, and learn ing causal structure using Bayesian networks. It is then argued that this model is closely related to how humans reason with and learn causal structure. It is shown that studies in psychology on discounting (reasoning concern ing how the presence of one cause of an effect makes an...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملPolynomial Constraints in Causal Bayesian Networks
We use the implicitization procedure to generate polynomial equality constraints on the set of distributions induced by local interventions on variables governed by a causal Bayesian network with hidden variables. We show how we may reduce the complexity of the implicitization problem and make the problem tractable in certain causal Bayesian networks. We also show some preliminary results on th...
متن کامل